Regular t-balanced Cayley maps on semi-dihedral groups
نویسندگان
چکیده
منابع مشابه
Distance-regular Cayley graphs on dihedral groups
The main result of this article is a classification of distance-regular Cayley graphs on dihedral groups. There exist four obvious families of such graphs, which are called trivial. These are: complete graphs, complete bipartite graphs, complete bipartite graphs with the edges of a 1-factor removed, and cycles. It is proved that every nontrivial distance-regular Cayley graph on a dihedral group...
متن کاملRegular maps from Cayley graphs, part 1: Balanced Cayley maps
Skoviera, M. and J. ‘&Iii, Regular maps from Cayley graphs, Part i: Balanced Cayley maps, Discrete Mathematics IO9 (1992) 265-276. A Cayley map is a Cayley graph 2-cell embedded in some orientable surface so that the local rotations at every vertex are identical. Two types of Cayley maps are introduced: the balanced and antibalanced Cayley maps. In Part 1, conditions are given uuder which a bal...
متن کاملA Classification of Prime-valent Regular Cayley Maps on Abelian, Dihedral and Dicyclic Groups
A Cayley map is a 2-cell embedding of a Cayley graph into an orientable surface with the same local orientation induced by a cyclic permutation of generators at each vertex. In this paper, we provide classifications of prime-valent regular Cayley maps on abelian groups, dihedral groups and dicyclic groups. Consequently, we show that all prime-valent regular Cayley maps on dihedral groups are ba...
متن کاملOn the eigenvalues of Cayley graphs on generalized dihedral groups
Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$. Then the energy of $Gamma$, a concept defined in 1978 by Gutman, is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$. Also the Estrada index of $Gamma$, which is defined in 2000 by Ernesto Estrada, is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$. In this paper, we compute the eigen...
متن کاملRegular Cayley maps for finite abelian groups
A regular Cayley map for a finite group A is an orientable map whose orientation-preserving automorphism group G acts regularly on the directed edge set and has a subgroup isomorphic to A that acts regularly on the vertex set. This paper considers the problem of determining which abelian groups have regular Cayley maps. The analysis is purely algebraic, involving the structure of the canonical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series B
سال: 2009
ISSN: 0095-8956
DOI: 10.1016/j.jctb.2008.09.006